
sltoo – Integrating Requirements into CI/CD

Kristoffer Nordström
September 6, 2021

info@sltoo.dev

1

info@sltoo.dev


Motivation



Motivation

• Fully automated traceability matrix
• Consistent and up-to-date documents from the source
• Store (requirements’) meta-information with code

2



Theory



Requirements and Traceability

• Requirements across system hierarchies
• Implies the need for traceability

• Traceability from and to specification items
• Directions

• Forward (Impact) from requirements specification to dependant
documents

• Backwards from verification artefacts to specification

3



Traceability

• Requirement A
• Red button to shut down system

• Implementation a says implemented A
• Traceability can be automated
• Machine-readable

• What if A changes?
• A knows nothing of a

PANIC

4



Traceability

• Requirement A
• Green button with large friendly letters: don’t panic

• Implementation a says implemented A
• Traceability can be automated
• Machine-readable

• What if A changes?
• A knows nothing of a
• Traceability isn’t given anymore

DON’T
PANIC

5



Proposed Solution

• Requirement A-1.0
• Red button to shut down system

• Implementation a says implemented A-1.0
• A-1.0 (red button) changes to A-2.0 (green button)
• Use hashes instead of semantic versioning
• Calculated automatically

DON’T
PANIC

6



Example Requirement

Name: VCD Writer Inputs
Topic: ReqsDocument
Description: The output from ...
Rationale: Make the process as ...
Status: external
Owner: development
Effort estimation: 1
Invented on: 2020-05-30
Invented by: default
Type: requirement

Hash is calculated over Name,
Description and Verification
Method
$ sha256sum ${Name} \

${Description} \
${VerifMethod}

Example from pymergevcd’s architecture specification

7

https://kown7.github.io/pymergevcd/#architecture


Testing the Example Requirement

• Requirement ID: SW-AS-501
• Hash: F8D68D11
Test Code

def test_read_write_engines(record_property, dummy_vcd_file):
"""Write-back from read file, equal output"""
record_property('req', 'SW-AS-501-f8d68d11')
record_property('req', 'SW-AS-500-4c1a395a')
...
assert filecmp.cmp(dummy_vcd_file, ofile)

xUnit Output
<testcase line="20" name="test_read_write_engines" time="2.830">

<properties>
<property name="req" value="SW-AS-501-f8d68d11"/>
<property name="req" value="SW-AS-500-4c1a395a"/>

</properties>
</testcase>

8



Traceability Matrix

9



Integrating Requirements into CI/CD

• Integration for every output document
• Match open and/or failed issues

• Left as an excercise for the reader
• Example for failed issues

$ bash -ec 'test "$(grep -c failed \
arch/artifacts/tracematrix.tex)" -eq "0"'

10



sltoo in Practice



Excel Workflow (I)

• Defining system collaborative effort
• Familiarity / Ease-of-use
• Consistency of Documents

• The Truth is always in your repository
• Templating for branding

• Works if all you’ve got is Office and E-Mail
• Getting Started: Edit example Excel-Sheet

11

https://kown7.github.io/pymergevcd/assets/requirements/artifacts/specification.xlsx


Excel Workflow (II) – Distribution

12



Document Baseline

Every document has a its own version tag

$ git tag -a RS/1A
$ git describe $(git log -n 1 --format=%H -- docs/reqs)

The output from git describe will be used as document baseline

RS/1A — 0aec3ad0 # good
RS/1A-8-g76b3ffe — 76b3ffe4 # tainted

Example excerpt from page 7:

13



Excel Workflow (III) – Merging

14



Conclusion



Storytime Revisited

• Requirements shipped with code X
• Including relational meta-information

• Traceability matrix automated X

• Continuously updated documentation X
• Document Versioning (baselining) X

A familiar UI for all stakeholders included

15



Questions



Appendix

16



rmtoo – Introductions

An introduction presentation into rmtoo and with more details.

17

https://github.com/florath/rmtoo/releases/download/v23/rmtooIntroductionV9.pdf
https://github.com/florath/rmtoo/releases/download/v23/rmtooDetailsV5.pdf


Traceability Rationale

• Traceability for the given requirements
• Bring code and documentation into same repository
• Integrate into build-system

• Detect upstream changes to requirements
• Quickly identify affected code-regions

• No silver bullet for verification

18



Results

The status external will yield the following results:

• open
• No matching requirement ID

• passed
• Matching requirement ID
• All hashes match
• Unit-tests passed

• failed
• Matching requirement ID
• Some/all hashes didn’t match, or
• Unit-tests haven’t passed

19



Installation

Traceability features are in the beta releases.

$ pip3 install sltoo>=25.1.0b3
$ wget https://kown7.github.io/pymergevcd/assets/template_project.zip

20



Alternatives

• Sphinx-Needs
• Octane ALM
• Codebeamer
• Aligned elements
• See Wikipedia
• . . .

21

https://sphinxcontrib-needs.readthedocs.io/en/latest/
https://www.microfocus.com/en-us/products/alm-octane/overview
https://codebeamer.com
https://www.aligned.ch/
https://de.wikipedia.org/wiki/Software-Configuration-Management#Diverse_Softwareentwicklungsprodukte


Future Developements

• Write Parser for Test Reports X
• Documents with the correct identifier automatically solve the

specification
• Document Formats:

• docx (maybe with pandoc)
• LATEXX
• Text

• GUI with multi-documents support (RS/TS/..)
• Simplify design process

22



Final Thoughts

• Never test against your requirements
• Always write some form of test specification

23



Licensing

This work is licensed under a
Creative Commons “Attribution-
NonCommercial-ShareAlike 3.0
Unported” license.

24

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

	Motivation
	Theory
	sltoo in Practice
	Conclusion
	Questions
	Appendix

